
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#*****

CVPR
#*****

CVPR 2022 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Musical Genre Classification

Joey Zheng
joeyz@mit.edu

Daniel Kim
dyk0518@mit.edu

A. Abstract

Musical Genre Classification (MGC) is the process that
predicts a musical genre given a musical audio input. Pre-
vious work has used both visual and audio features repre-
sentation of the input, achieving as high as 93.4% accuracy
on the GZTAN dataset. When we limit the scope of feature
extraction to only visual representation, the best accuracy
achieved by the previously published models is 89.30%. In
this paper, we show that higher accuracy can be achieved by
extracting more and combining multiple audio-visual fea-
tures, as well as making modifications to the model archi-
tecture. By using a combined audio-visual feature of Mel-
spectrogram, MFCCs, and Chromagram with a hybrid CNN
+ Bi-GRU architecture, we achieved an empirical accu-
racy of 89.94%. This accuracy is higher than the accuracy
achieved by other published models that conduct MCG on
the GTZAN dataset using audio-visual features only.

B. Introduction

Think of your favorite genre of music. Have you ever
wondered, what it is about that genre that you specifically
enjoy? Whether it be improvisation in jazz or simple har-
monies in country, each genre has specific musical features
that attract its audience. With recent signal processing and
machine learning development, we can computationally ex-
tract and identify these key audio features from musical
pieces [11].

In this paper, we aim to use these extracted features
from musical audio and use them to predict the musical
genre. This process is known as Musical Genre Classifica-
tion (MGC). With countless musical pieces produced every
day in the prolific music industry, automating the classifi-
cation and analysis tasks can benefit the field as a whole.
There are many applications for this concept. Digital mu-
sic services, such as Spotify, use MGC in the process of
music categorization and recommendation, as well as pro-
viding data sources that could be analyzed through MGC in
third-party research [3]. Furthermore, MGC helps expand
and develop the broader concept of Music Information Re-
trieval (MIR), a multidisciplinary field that focuses on the
extraction, analysis, organization, and retrieval of music-
related information [4]. In this paper, we explore the current
state of MGC using visual features, and how we improved

it with data augmentation and architecture modifications of
the model.

C. Background and Related Work
The standard dataset that is used for MGC is the GZ-

TAN dataset, which has become the benchmark for musi-
cal analysis [13]. Hence, we also conduct our study using
the GZTAN dataset. Currently, one of the best-performing
MGC models for this dataset was introduced by Dai et al.,
which uses Mel-Frequence Cepstral Coefficients (MFCCs)
and other audio features as the inputs with Deep Neural Net-
works to achieve 93.4% accuracy [2]. Dai et al. use two sep-
arate pipelines, Visual Feature Extraction (VFE) and Audio
Feature Extraction (AFE) modules, during its data feature
extraction process.

In our paper, we narrow down the scope to the MGC
models that focus on using the image-level feature extrac-
tion of the musical audio input. By excluding the audio fea-
ture extraction in the process, we limit our study to how well
computer vision techniques can be used for MGC. Within
this narrowed scope, the best-performing model has been
published by Ashraf et al. [1]. In their study, Ashraf et
al. compare the performance based on two visual features
from the audio: Mel-spectrogram and MFCCs, as well as
a hybrid architecture of CNN and variants of RNN such
as LSTM, Bi-LSTM, GRU, and Bi-GRU. Empirically, the
best accuracy of 89.30% was achieved through the pro-
posed hybrid architecture of CNN and Bi-GRU using Mel-
spectrogram.

There are, however, a few ways that we suggest could
improve this MGC using audio-visual features. We high-
light two main ways this improvement could be achieved,
data augmentation and architecture modification, which are
also the main contributions of our paper:

• In addition to two audio-visual features used in the
previous state-of-the-art model, Mel-spectrogram and
MFCCs, we also use Chromagrams. Moreover, rather
than training the model using each audio-visual fea-
ture individually, we also try training the model with
combined audio-visual features. This way, each audio
sample is represented with more diverse, informative
features in the model.

• Compared to the previous state-of-the-art model, we
reduce the number of CNN layer blocks, which helps
with the computational efficiency of the model. We
also replace the original RNN layer, which consisted
of GRU, Bi-GRU, and GRU, with two Bi-GRU layers
that led to better performance of the model.

With these changes, our model achieved the best accu-
racy of 89.94%, surpassing the performance of the previous
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MGC models that use audio-visual features. In the follow-
ing sections, we dive deeper into our methodology.

D. Methodology
D.1. Hypothesis

Our hypothesis is that a musical genre classification
model that trains using combined audio-visual features will
outperform those that train using only one audio-visual fea-
ture. We base our hypothesis on two key observations.
Firstly, once audio-visual features are extracted, they can
be simply treated as images. This implies that image classi-
fication techniques, such as CNNs, can be applied to solve
this classification problem. Secondly, we observe that au-
dio is multi-dimensional. One could extract many features
from a piece of audio (especially musical audio) such as
frequency, timbre, rhythm, dynamic, etc. Previous work in
musical genre classification tends to focus on one audio-
visual feature at a time. We want to investigate the poten-
tial of combining audio-visual features for training musical
genre classification models.

D.2. Dataset

Our model was trained on the GZTAN dataset. This is
a publicly available dataset consisting of 10 labeled gen-
res: blues, classical, country, disco, hiphop, jazz, metal,
pop, reggae, and rock. Each genre comes with 100 au-
dio tracks each 30 seconds in length. The audio tracks are
all 22050Hz mono 16-bit audio files in .wav format with
a storage size of about 1.3MB. These audio files were col-
lected in 2000-2001 from various recording conditions such
as personal CDs, radio, microphone recordings, etc. Addi-
tionally, the dataset includes 2 CSV files with statistics on
the full audio file (30 seconds) and split audio file (3 sec-
onds). Among some of the statistics are spectral centroid
means, spectral centroid variances, MFCC means, MFCC
variances, tempo, and more. However, we did not utilize
these statistics, which we will discuss in the future work
section. We chose the GZTAN dataset as it serves as the
musical analysis benchmark in the field of musical genre
classification.

D.3. Audio-Visual Features

Audio-visual features refer to features extracted from the
audio that has visual components and can be analyzed with
computer vision techniques. More specifically, this paper
works with features such as spectrograms, which span the
time axis and frequency axis with the frequency intensity at
each point. This is in contrast with features such as spec-
tral centroids, which measure the weighted mean of the fre-
quencies at a given time.

This paper utilizes three audio-visual features: Mel-
spectrograms, MFCCs, and Chromagrams.

D.3.1 Mel-spectrogram

Spectrograms have high utility for visualizing audio. Audio
can be thought of as a combination of varying amplitudes of
frequency over time. A spectrogram decomposes audio into
its time and frequency components. Specifically, it maps a
given time and frequency to the intensity of that frequency
at that time. This is achieved by applying the Short-Time
Fourier Transform (STFT). The STFT is a Fourier transform
performed on smaller windows, or segments, of the audio.
This allows for the extraction of localized frequency con-
tent, which is more suitable for the analysis of frequently
varying audio such as music.

Mel-spectrogram is a transformed spectrogram using the
mel-scale, a non-linear scale that better approximates the
perception of the human auditory system. The approximate
formula for the mel-frequency of linear frequency in hertz,
f , is as follows:

mel(f) = 2595 ∗ log10
(
1 +

f

700

)
To construct a Mel-spectrogram, a parameter for the

number of mel-bands, nmel, is chosen (in our models, we
used nmel = 16). A higher number of mel-bands implies a
more detailed representation of the audio data (though too
much may lead to overfitting). Using the mel-scale and
nmel, a mel-bank filter is constructed and then applied to
the audio data to generate the Mel-spectrogram (Figure 1).

Figure 1. Example mel-bank filter with nmel = 11

An example of a Mel-spectrogram on one of our audio
files is shown in Figure 2.

D.3.2 Mel Frequency Cepstral Coefficient (MFCC)

The MFCC is a compact and low-dimension representation
of the audio data by applying the Discrete Cosine Trans-
form (DCT) to the Mel-spectrogram. As a result, the most
significant cepstral coefficients are extracted. Cepstral coef-
ficients represent the spectral envelope of the audio data and
were found to be beneficial as features for machine learning
models. To generate the MFCC, a parameter for the number
of cepstral coefficients, nmfcc, is chosen (in our models, we
used nmfcc = 13). An example of an MFCC on one of our
audio files is shown in Figure 3.
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Figure 2. Mel-spectrogram of an audio labeled as classical

Figure 3. MFCC of the same audio labeled as classical

D.3.3 Chromagram

Chromagram is a type of spectrogram that represents the en-
ergy distribution of the 12 standard pitch classes of modern
Western music by applying the STFT with respect to the 12
chroma values. Consequently, Chromagrams are invariant
to octave differences, timbre, instrumentation, etc.

An example of an Chromagram on one of our audio files
is shown in Figure 4.

Figure 4. Chromagram of the same audio labeled as classical

D.4. Method

D.4.1 Preprocessing

To prepare the data for training, we performed data aug-
mentation on the dataset. First, each 30-second audio file
aforementioned was further split into 5 segments of 6 sec-
onds each. This augmentation increases the amount of la-
beled data by a factor of 5. Six-second audio files are long
enough such that the overarching context (the genre in our
case) is maintained while short enough to allow for a higher
prediction rate. As a result, there will be 5000 indepen-
dent audio data each having a genre label and 6 seconds in
length.

After the segmentation, audio-visual features are ex-
tracted from the audio data. Each 6-second audio file
will generate a Mel-spectrogram, MFCC, and Chromagram.
These audio-visual features, along with its genre label will
be stored in a JSON file to be used later. When we use mul-
tiple of these extracted features to represent an audio input,
we combined (through concatenation) those features before
inputting them into the model. This process of extracting
audio-visual features from input audio is illustrated in Fig-
ure 5.

Figure 5. Audio input data processing diagram

D.4.2 Model

We investigated the performance of our model based on 5
different model architectures and 5 different sets of audio-
visual features. Specifically, the 5 architectures are CNN,
LSTM, Bi-GRU, CNN + LSTM, and CNN + Bi-GRU. The
5 audio-visual features are MFCC, Mel-spectrogram, Chro-
magram, MFCC + Mel-spectrogram, and MFCC + Mel-
spectrogram + Chromagram. We trained and analyzed the
performance of each combination of model architecture and
audio-visual features, leading to 25 different models that
were tested in total.

Below in Figures 6 7 8, we display the architectures of
CNN, CNN + LSTM, and CNN + Bi-GRU respectively (the
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architectures for our Bi-GRU and LSTM models individu-
ally are not displayed as they use the same parameters as in
the hybrid architectures).

Figure 6. Proposed CNN architecture

Figure 7. Proposed CNN + LSTM hybrid architecture

Figure 8. Proposed CNN + Bi-GRU hybrid architecture

D.4.3 Training

To prepare for model training, the audio-visual features
JSON file is loaded and then partitioned into a training set
(60%), validation set (15%), and testing set (25%). The la-
bels are then one-hot encoded into 10 perpendicular vectors.
In our models, we used the Adam optimizer with a learning
rate of 0.0001 as an optimizer and categorical cross-entropy
for the loss function. As hyperparameters, each model used
a batch size of 32 and trained for 30 epochs. In our largest
model (CNN + Bi-GRU trained on MFCC + Mel + Chroma
features), each epoch to approximately 230 seconds to com-
plete.

D.5. Performance Metrics

The performance of our model is measured by the cu-
mulative test accuracy of the ground truth genre label of the
audio data versus the predicted genre label of the same au-
dio data. In other words, the metric is the accuracy of the
model, namely the proportion of correctly classified audio
data.

E. Experimental Results and Discussion
The summary of the accuracy in our study is presented

in Table 1. Moreover, the graph that compares the per-
formance of different audio-visual features on the best-
performing architecture, CNN + Bi-GRU hybrid, is shown
in Figure 9.

Table 1. Summary of the accuracy. For each architecture (row), the
highest accuracy achieved is bolded. The overall highest accuracy
is in blue.

Figure 9. Accuracy with CNN + Bi-GRU hybrid Architecture

The findings indicate that having audio represented in
multiple audio-visual features generally leads to better per-
formance. This can be explained by the fact that with
more audio features, the model has more characteristics
of each genre of music to learn from. There were some
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architectures, however, where this causal relationship be-
tween more features and better performance was not ob-
served. For example, under LSTM architecture, the model
achieved 81.49% accuracy with just the MFCC feature,
higher than 74.10% (MFCC + Mel) or 75.45% (MFCC +
Mel + Chroma) achieved with multiple features. Although
we would like to explore this phenomenon more in-depth in
the future, we hypothesize that extra features that LSTM
fails to learn the relevance of have led to an over-fitted
model.

In terms of model architecture, we see that the hybrid of
CNN and Bi-GRU layers perform the best in every feature
representation. This hybrid that uses both CNN and RNN
layers perform better than using each of them alone for
it extracts both spatial and temporal information from the
audio-visual features. Specifically, with the feature repre-
sentations of MFCC, Mel, and Chroma, the model achieved
89.94% accuracy in the test set. The plot for Accuracy and
Error against Epoch in Figure 10 does not show signs of
overfitting since the testing accuracy does not deviate too
much from the training accuracy with the increasing num-
ber of epochs. This means that the weights generalize well
to the dataset. This accuracy is higher than the accuracy
achieved by other published models that conduct MCG on
the GTZAN dataset using audio-visual features only. The
comparison of our model’s performance and other state-of-
the-art models is shown in Table 2.

Figure 10. Accuracy and Error of CNN + Bi-GRU hybrid archi-
tecture with MFCC + Mel + Chroma features

F. Conclusion and Future Work
In this paper, we found that combining audio-visual fea-

tures for training was beneficial for musical genre classifi-
cation, which aligns with our hypothesis. More specifically,
our CNN + Bi-GRU architecture achieved an accuracy of
89.94% using a combination of MFCC + Mel + Chroma
features on the GTZAN dataset. Our model outperformed

Table 2. Comparison of State-of-the-Art Models

Method Accuracy
George Tzanetakis [13] 61.00%
G. Sun et al. [12] 66.40%
A Heaki et al. [7] 70.60%
Nilesh M. [10] 77.78%
Praseneet Fulzeele et al. [6] 89.00%
N. Farajzadeh [5] 86.00%
Pradeep Kumar D. et al. [9] 86.00%
Jan Jakubik [8] 87.70%
Mohsin Ashraf et al. [1] 89.30%
Our Model 89.94%

other state-of-the-art models that only used audio-visual
features such as the 89.30% accuracy achieved in January
2023 [1].

Due to time and computing constraints, we understand
there are many potential improvements that could be made
to our model. For future works, we will incorporate other
audio features such as spectral centroid, tempo extraction,
percussive features, harmonic feature, etc. as presented in
Jinliang L. et al 2021 [2], which achieved an accuracy of
93.4% by using both Visual Feature Extraction module and
Audio Feature Extraction module. One approach is to uti-
lize the statistics provided in the GTZAN dataset. We will
also try higher resolution of audio-visual feature extraction
by increasing the number of mel-bands for generating Mel-
spectrograms (this was again due to limited computational
power). Additionally, we will tweak and optimize hyperpa-
rameters (i.e. number of layers, epoch, etc.), train on other
audio datasets (such as the Million Song Dataset), and in-
vestigate other ML architecture models (e.g. transformers).

G. Individual Contributions
• Literature reviews (Joey Zheng and Daniel Kim)
• Audio data download & feature extraction & prepro-

cessing (Joey Zheng)
• Model layer architecture design & implementation

(Daniel Kim)
• Training and testing of different models (Joey Zheng

and Daniel Kim)
• Final report & presentation (Joey Zheng and Daniel

Kim)
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