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Abstract

We introduce LyricsBERT, a transformer-based
music recommendation system that empha-
sizes lyrics in hopes of enhancing user experi-
ences on popular music platforms. Through
fine-tuning on Masked Language Modeling
(MLM) task, LyricsBERT produces representa-
tive song embeddings from lyrics. Experiments
reveal that for the original DistilBERT model,
higher learning rates diminish embedding qual-
ity, while a novel architecture with an added
fully connected layer performs optimally at a
learning rate of 5e-5. Attention maps highlight
an improved attention distribution with the fully
connected layer, enhancing semantic represen-
tation. A rigorous attempt at objective evalu-
ation of song recommendations demonstrates
LyricsBERT’s superior recommendation qual-
ity compared to the unmodified DistilBERT,
emphasizing the impact of architectural modifi-
cations. The recommendation system employs
K-Means clustering for efficient vector simi-
larity measures, contributing. Results indicate
that the model excels in capturing diverse se-
mantic relationships within lyrics, showcasing
its potential for fairer and more contextually
aware music suggestions.

Introduction

In the past few decades, the music industry has seen
one of its most prolific eras with novel technologies
that have accelerated music production and distribu-
tion. However, the way listeners mainly encounter
and consume new pieces of music has raised con-
cerns about fairness (Dinnissen and Bauer, 2022).
Song recommendation algorithms employed by
YouTube, Spotify, and other music streaming ser-
vices often incorporate artist popularity and the
users’ social connections, unfairly overemphasiz-
ing the recommendation likelihood of mainstream
music (Airoldi et al., 2016). These algorithms act
as a perpetual feedback loop, reinforcing existing

preferences and limiting user exposure to other
music. While it is good to give users a custom lis-
tening experience, a music recommendation should
also avoid making biased recommendations against
less popular artists. A recommendation system
that does not bias its decisions against less popular
artists provides an opportunity for the listeners to
discover their new favorite artists more easily, and
it also provides a more equal playing ground for
the smaller artists in a highly competitive music in-
dustry. To do so, we would like to develop a music
recommendation model whose primary measure
of decisions is based on the quality of the music
rather than the artist’s popularity and social con-
nections. Therefore, in this project, we propose a
model that gives song recommendation that focuses
on features that are inherent to a song: its lyrics.

Related Work

Many works in the academic field have focused
on developing music recommendation algorithms
that incorporate non-musical features. For exam-
ple, Gatta et al. proposed Hypergraph Embeddings
for Music Recommendation (HEMR), which incor-
porates all the possible and complex interactions
between users and songs with related character-
istics in their recommendation algorithm (Gatta
et al., 2023). Similarly, Wang et al. proposed
Content- and Context-Aware Music Embedding
(CAME), which obtains behavior information, in-
cluding users’ listening behaviors, music-playing
sequences, and sessions, to generate music rec-
ommendations (Wang et al., 2020). While these
techniques may help maximize the sequential lis-
tening/viewing time by focusing on analyzing the
users’ listening behaviors and past sessions, they
fail to incorporate the inherent musical features
of the songs in their recommendations and under-
mine less mainstream music. Hence, there is a



need for a song recommendation model that fo-
cuses on the features of a piece of music itself,
not the users’ listening behaviors, to generate its
recommendations, which provides fairer opportuni-
ties for smaller artists and a higher quality musical
experience for the listeners.

Among different musical features, such as genre,
beats, etc., this project focuses on generating song
recommendations based on lyrics. The attempt to
generate music recommendations based on lyrics,
however, is not new. These attempts have often
tried to extract the semantics and emotions from
the lyrics, which were then used to make recom-
mendations to other songs with similar features. In
2021, there was a study that extracted contextual
embeddings from the lyrics with Google’s Univer-
sal Sentence Encoder and used semantic similarity
to generate song recommendations. This proposed
model achieved an F1 score of 0.7700, which was
higher than other lyrics-based song recommenda-
tion models at that time (Gupta et al., 2021). More-
over, Revathy et al. proposed LyEmoBERT, which
uses emotional classification (happy, angry, relaxed,
and sad) of lyrics and the Sentence Transformer
model to generate song recommendations (Revathy
et al., 2023). However, Gupta et al., when eval-
uating the quality of their recommendations, re-
lied on search engine recommendations as ground
truth, which may be biased towards using popular-
ity metrics to generate results to queries. Moreover,
Revathy et al. relied solely on the emotional la-
bels predicted for lyrics as the primary criteria for
song recommendations, neglecting to consider the
intrinsic content of the lyrics.

While these works have made significant ad-
vancements in analyzing lyrics for generating mu-
sic recommendations, we believe there are two
main ways in which our work can improve on these
past works.

First, we aim to incorporate more recent encod-
ing techniques to generate richer semantic and syn-
tactical embeddings. To do this, we will add further
improvements to the existing DistilBERT for the
encoding mechanism (Sanh et al., 2019) with ad-
ditional. This way, we can allow the model to
fine-tune and learn a better way to generate embed-
dings for our project’s more specific domain: song
recommendation through lyrical analysis. Second,
we will conduct more extensive hyperparameter
searches of an existing high-performing encoder.
This includes, but is not limited to, testing different

optimizers during the embedding model training.
Furthermore, in the recommendation model in the
final layer, we can test different hyperparameters
such as sizes of the k-neighbors and randomization
factors for picking the song within the clusters.

Past work has also been done in the evaluation
of recommendation systems.

Firstly, a simple yet popular method is to man-
ually annotate how similar a query song is to the
recommended songs. This could entail labels by ex-
perts or surveys from laymen. Gupta et al. utilized
manual labor to compare queries and recommended
lyrics on testing sets of various sizes(Gupta et al.,
2021). Using these annotations, we can calculate
accuracy, precision, recall, and F1-score as metrics
of evaluation for a recommendation system. The
benefit of this evaluation method is its simplicity
and straightforwardness in calculation. However,
manual annotations require substantial resources in
labor and time, which is unsuitable for the timeline
of our project. Additionally, human biases and er-
ror pose a large issue as external factors such as the
mood or background of the annotator could affect
their answer and the task is, to a certain degree,
subjective in nature.

Another existing evaluation method is to com-
pare with existing song recommendation systems.
In particular, given a query, comparing the out-
put lyrics of the existing recommendation systems
with that of ours. However, it is problematic if
we treat existing systems as ground truth since, as
mentioned before, existing systems introduce bi-
ases by generating recommendations based largely
on users’ behavior and activities. At best, we can
conclude if our recommendations are reasonable
according to industry standards. Thus, this evalu-
ation method does not align with our focus on the
intrinsic properties of the lyrics of songs.

Methodology

The overall method is to train and fine-tune em-
bedding models on downstream Natural Language
Processing (NLP) tasks. In brief, we utilize
transformer-based embedding models similar to
Distilbert, as well as an added fully connected layer
(Sanh et al., 2019). We then train them on the
downstream tasks of Masked Language Modeling
(MLM) (Salazar et al., 2019). Finally, we integrate
the embedding model into a recommendation sys-
tem and evaluate its abilities.



Figure 1: LyricsBERT Training Method

Dataset and Preprocessing
We utilize two datasets from Kaggle (Song
Dataset, SHRIRANG MAHAJAN) (Song Dataset,
EDENBD). Combined, they have more than
200,000 songs. Due to limitations in computa-
tion, we randomly selected 12,000 songs as our
raw dataset. We partition this dataset 70/15/15 for
training, validation, and testing, respectively.

The key downstream tasks we will train on are
Masked Language Modeling (MLM). To generate
training data for MLM, we will modify 15% of the
tokens in a data point. 80% of these tokens are
replaced with the [MASK] tokens. Then, 10% are
corrupted, where the tokens are replaced by another
random token. The remaining 10% of the tokens
remain the same. The ground truth will simply be
the original text.

Embedding Models
BERT is the cornerstone of our embedding model.
It is extremely capable for its ability to capture se-
mantic and syntactical information from sequences.
Moreover, we introduce a fully connected layer
for LyricsBERT. Unlike the natural English lan-
guage that BERT is trained in, the lyrics of songs
inherit more specific features and structures. By
adding a fully connected layer that is then trained
on the downstream tasks for our specific domain of
musical lyrics, LyricsBERT’s embedding models
capture key features that are inherent to musical
lyrics.

The training method for LyricsBERT is shown
in Figure 1. We extract the metadata from songs,
tokenize them, generate augmented input for model
training, and then send the masked inputs to a
BERT architecture to produce embeddings.

Downstream Tasks
Once the embedding model has processed the input
tokens, these embeddings are fed to a downstream
task.

The main downstream task we used was MLM.
This requires the model to predict what the original

Figure 2: Preprocessing for LyricsBERT Inference

Figure 3: LyricsBERT Inference

words of the chosen masked, corrupted, and pro-
tected tokens were. Although the original BERT
is trained on the MLM task itself, we introduced
MLM as our downstream task because, with our
specific focus on musical lyrics, LyricsBERT may
learn more nuanced structures and patterns that are
specific to the musical lyrics. The loss criterion
used is Cross-Entropy Loss (Zhang and Sabuncu,
2018), and this is used for backpropagation through
the model.

Recommendation System

To have a fast recommendation system, we will
need to preprocess the song dataset.

We pass the songs’ lyrics through LyricsBERT.
We save the embedding representations in a data
structure so we don’t have to reproduce them each
time. This process is displayed in Figure 2.

Finally, for inference, we follow the algorithm
in Figure 3. When a user listens to or interacts with
a song, we generate embeddings for it using the
song’s metadata and then compare these embed-
dings with the embeddings found in our dataset of
songs. We then use an efficient vector similarity
measure to produce some relevant songs. The main
technique we use for finding similar vectors in our
embedding space for songs is K-Means clustering
(Makwana et al., 2013) followed by random sam-
pling from the cluster that is selected. K-Means
clustering allows us to decrease the search space by
eliminating the need for having to go through every
song in our dataset linearly to generate the recom-
mendation. Moreover, it introduces random, not
deterministic, sampling, which is a desired aspect



of a music recommendation system.

Evaluation
We will evaluate the recommendation system by
comparing the cosine similarity between the em-
beddings of songs returned. We utilize the key
idea that a song should be similar to itself. With
two songs A and B that are not similar, if we pass
the lyrics of both songs into our recommendation
system, we get the corresponding recommenda-
tions for A and B, calling them Ar and Br, re-
spectively. In this case, we would hope that the
songs returned by the recommendation system are
different. Now, assume that we cut A in halves
to arrive at A1 and A2. If we pass the lyrics of
A1 into the recommendation system, we get out a
song A1r. Similarly, we pass the lyrics of A2 into
the recommendation system and get song A2r. We
compare the cosine similarity between the embed-
dings of Ar and Br, specifically e(Ar) and e(Br)
as well as the cosine similarity between the embed-
ding of A1r and A2r, namely e(A1r) and e(A2r).
Because the former lyrics, A and B, were from dif-
fering songs, it makes sense that they should have
a smaller cosine similarity to the latter, A1 and
A2. Based on this observation, we compute these
scores over our test dataset and find the average
difference between cosine similarities. Hence, in
our model, we desire the average cosine similarity
between recommended songs generated from the
same song to be greater than the average cosine
similarity between recommended songs generated
from different songs. Thus, as a point of evaluation,
we try to maximize the score in the formula below:

Score = |e(Ar)− e(Br)| − |e(A1r)− e(A2r)|

We believe that this method of evaluation reduces
human bias and is efficient while preserving the
intrinsic properties of a song’s lyrics—satisfying
the goals of our system.

Experimental Results and Discussion

Masked Language Modeling
To fine-tune our embedding model for downstream
tasks, we experimented with different learning rates
and architectures in the Masked Language Mod-
eling (MLM) task. The goal was to assess the
effect of these variations on the quality of our rec-
ommendation system and hence the embeddings
generated by the model, as quantified by the evalu-
ation metric discussed in the previous section. We

compare all performances to that of an unmodified,
un-fine-tuned DistilBert model using our custom
evaluation metric. A comparison of all of model
performances can be seen in Figure 4, where we
interpret a higher evaluation score to signify higher
quality recommendations.

We conducted experiments with different learn-
ing rates to understand their effect on the perfor-
mances of our different architectures. For the un-
modified DistilBERT model, we observed that us-
ing a higher learning rate during fine-tuning led
to a deterioration in embedding quality. This phe-
nomenon can be attributed to the model being al-
ready close to a local optimum, and further training
at higher rates results in bouncing around without
meaningful improvement. In contrast, when intro-
ducing an additional fully connected layer to the
architecture, we found that a learning rate of 5e-
5 yielded the best performance. However, as we
increased the learning rate beyond this point, the
performance of the modified architecture started
to degrade. This drop in performance may be at-
tributed to the risk of overshooting optimal param-
eter values. It is important to note that at a learning
rate of 5e-5, there is still room for convergence as
the newly added fully connected layer introduces
additional parameters.

Now, in our investigation of architectural varia-
tions, we found that the model with an added fully
connected layer showed the most promising results.
Fine-tuning this architecture at a learning rate of
5e-5 yielded the highest, suggesting that incorpo-
rating task-specific modifications can enhance the
model’s ability to generate high-quality embed-
dings. However, it is crucial to strike a balance
in model complexity, as overly large architectures
may hinder convergence and result in sub-optimal
performance.

Overall, these experiments provide insights into
the sensitivity of our embedding model to learning
rates and architectural modifications. The findings
guide our choices in fine-tuning strategies for opti-
mal downstream task performance.

Attention Maps

To gain insights into how our model processes and
attends to different parts of the input sequence,
we analyzed attention maps for both the original
DistilBERT architecture and a modified version
with an additional fully connected layer. Attention
maps provide a visualization of the self-attention



Figure 4: LyricsBERT Evaluation Performance: Average Embeddings Difference Scores are Computed Over
Different Learning Rates

mechanism, showcasing which tokens in the input
sequence receive more focus during the embedding
generation process.

In the unmodified DistilBERT architecture (Fig-
ure 5), we observed that certain attention heads
displayed a tendency to concentrate heavily on spe-
cific tokens, particularly the [SEP] (separator) to-
ken. This behavior raised concerns about the po-
tential dominance of non-informative tokens in the
attention process, possibly hindering the model’s
ability to capture meaningful semantic relation-
ships within the sequence.

Upon introducing a fully connected layer to the
architecture (Figure 6), we noted a significant im-
provement in the attention maps. The attention
heads exhibited a more uniform distribution of at-
tention across various tokens in the input sequence.
Notably, there was a reduction in the pronounced
focus on the [SEP] token observed in the unmodi-
fied architecture.

This shift towards a more balanced distribution
of attention suggests that the model with the added
fully connected layer may be capturing better se-
mantic relationships within the sequence. The en-
hanced attention diversity indicates that the model
is not overly fixated on specific tokens and is better
equipped to consider the contextual nuances of the
input.

In summary, the analysis of attention maps sup-
ports the hypothesis that the introduction of a fully
connected layer contributes to improved semantic

representation in the embeddings. The modified
architecture demonstrates a more nuanced and con-
textually aware attention mechanism, potentially
enhancing the model’s ability to capture meaning-
ful information from input lyric sequences.

Limitations

While our proposed approach shows promise in ad-
dressing the challenges of biased song recommen-
dations, several limitations should be considered.

Limited Diversity in Training Data
The datasets used for training and evaluation are
sourced from Kaggle, potentially limiting the diver-
sity of musical genres and styles represented. The
model’s performance may be biased towards the
characteristics of the songs present in the training
data, impacting its effectiveness for underrepre-
sented genres. The distribution of musical style of
this dataset was not investigated, so that may have
contributed to a source of bias in our embeddings
and hence our recommendations.

Lyric-Only Focus
Our recommendation system primarily relies on
the analysis of lyrics for generating embeddings.
While lyrics are essential, neglecting other musical
features, such as melody and rhythm, may limit the
system’s ability to provide holistic recommenda-
tions. Incorporating additional audio features could
improve the model’s capability to capture diverse
musical preferences.



Figure 5: Attention map for unmodified DistilBERT architecture

Figure 6: Attention map for modified architecture

Evaluation Metrics and Subjectivity

The evaluation method, based on cosine similarity
between embeddings, may not fully capture the sub-
jective nature of music preferences. User-specific
factors, emotional context, and personal tastes are
challenging to quantify accurately. Different users
may have diverse expectations from a recommen-
dation system, and a more user-centric evaluation
strategy could provide a more nuanced understand-
ing of the model’s effectiveness in future works.

Model Interpretability

While attention maps provide insights into the
model’s attention mechanism, interpreting these
visualizations may be challenging. Understanding
the exact semantic meaning behind specific atten-
tion patterns requires careful analysis and might
be subjective. The interpretability of the model’s
decisions remains an open challenge.

Scalability and Real-time Recommendations

Efficiency in handling a large number of songs and
providing real-time recommendations is not explic-
itly addressed. Scalability concerns, particularly
when dealing with extensive music libraries, could
impact the practical applicability of the recommen-
dation system in real-world scenarios.

These limitations highlight areas for future ex-
ploration and refinement in our approach to ensure
a more comprehensive and robust music recom-
mendation system.

Conclusion and Future Works

In this work, we introduced LyricsBERT, a re-
vised approach to music recommendation focus-
ing on generating song embeddings from lyrics.
The transformer-based embedding model demon-
strated promising results in capturing semantic re-
lationships within lyrics. The addition of a fully
connected layer improved attention mechanisms,
contributing to more meaningful embeddings.

Despite these advancements, there are notable



areas for future exploration. A more diverse train-
ing dataset is needed to enhance generalization,
considering various musical genres, languages, and
artist profiles. The inclusion of multimodal fea-
tures, such as melody and rhythm, can provide a
more comprehensive understanding of songs. Ad-
ditionally, refining evaluation metrics to align with
user preferences and exploring real-time scalability
are crucial for practical applications.

In conclusion, LyricsBERT represents progress
towards fairer and contextually aware music rec-
ommendations. Ongoing research is essential to
address current limitations and evolve towards a
more comprehensive and user-centric music recom-
mendation paradigm.

Impact Statement

In our project, we introduced LyricsBERT, a mu-
sical recommendation system that recommends
songs based on their inherent feature—lyrics. As
outlined in the Introduction section, we developed
this system with the hope that it would enhance the
enrichment of the listeners’ experience by focus-
ing on music’s inherent quality rather than social
or popularity features. Moreover, we believe this
recommendation system would help to serve as a
tool to reduce the ever-increasing gap between pop-
ular artists and not-as-popular artists by avoiding
artist popularity and the users’ social connections
to impact the recommended music.

Furthermore, we believe accessibility and trans-
parency of our project are highly important, so we
have conducted our project in a way that it can
be reproduced easily. Specifically, we used two
publicly available datasets on Kaggle for our study
(Song Dataset, SHRIRANG MAHAJAN) (Song
Dataset, EDENBD). Moreover, by incorporating
open-source libraries and DistilBERT, a distilled
version of BERT, in our model architecture, we
strategically constructed our project so that the
code base could be run and the results could be
reproduced with no extensive computing resources.
The exact code base of the project is also available
to be shared upon request with any of the authors
of this paper.
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